Trimethylsilyl Trifluoromethanesulfonate-Promoted Cycloaddition of Nitrones with Silyl Enol Ethers: Synthesis and Reactivity of 5-Siloxyisoxazolidines

Chiara Camiletti, ${ }^{a}$ Dilip D. Dhavale, ${ }^{b}$ Luca Gentilucci ${ }^{a}$ and Claudio Trombini ${ }^{*, a}$
${ }^{a}$ Dipartimento di Chimica 'G. Ciamician', Università di Bologna, via Selmi 2, I-40126 Bologna, Italy
${ }^{\text {b }}$ Department of Chemistry, University of Poona, Pune-411007, India

In the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf), the reaction of nitrones with silyl enol ethers affords 5 -siloxyisoxazolidines under mild conditions, in good to excellent yields. 5-Siloxyisoxazolidines can undergo chemoselective reductions to Mannich bases or N-hydroxy-1,3amino alcohols, and, in the presence of TMSOTf, react with silylated carbon nucleophiles at the acetalic C -5 carbon to give, for example, 5-allyl- and 5-cyano-isoxazolidines.

The reaction of nitrones 1 with η^{1}-allylic organometallic compounds can follow two alternative reaction pathways, depending on the nature of the metal involved (Scheme 1).

Scheme 1 Reagents: i, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{MgCl} ; \mathrm{ii}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{SiMe}_{3}$
Allyl-magnesium and -zinc reagents, in analogy to the general behaviour displayed by organolithium and magnesium compounds, ${ }^{1}$ give 1,3 -addition to nitrones and lead to homoallylic hydroxylamines $\mathbf{2}^{2}$ (path A). Allyltrimethylsilane, on the other hand, undergoes a thermal, concerted 1,3-dipolar cycloaddition to give 5 -(trimethylsilylmethyl)isoxazolidines $\mathbf{3}^{3}$ (path B). We recently re-examined these reactions and worked out novel approaches to the isoxazolidine ring system. They are based on the formation of O-silylated hydroxylamines 4 and 5 carrying an electrophilic centre at the γ position relative to the nitrogen atom, which spontaneously undergoes ring closure to products 6 and 3, respectively (Scheme 2).

Scheme 2
The iodo adduct 4 was generated by the addition of an iodinating agent (N-iodosuccinimide, ICl) to the homoallylic hydroxylamine 2, previously protected as its O-silyl derivative. ${ }^{2}$

Furthermore we found that the 1,3-dipolar cycloaddition of nitrones and allyltrimethylsilane can be catalysed by trimethylsilyl trifluoromethanesulfonate (TMSOTf). ${ }^{4}$ In the presence of this promoter the reaction takes place at $0-20^{\circ} \mathrm{C}$, while the thermal process requires a higher temperature $\left(T \geqslant 100^{\circ} \mathrm{C}\right) .{ }^{3}$ Under these conditions the reaction was proposed to occur via the intermediate carbonium ion 5 which undergoes cyclisation to the isoxazolidine 3. As an extension of the latter work, ${ }^{5}$ we recently reported preliminary results obtained in the TMSOTfpromoted 1,3-dipolar cycloaddition of nitrones and silyl enol ethers 7, which, in analogy to allyltrimethylsilane, react under
mild conditions ($\mathrm{T} \leqslant 0^{\circ} \mathrm{C}$) and give 5 -siloxyisoxazolidines 8 (Scheme 3). \dagger

Scheme 3 Reagents and conditions: i , TMSOTf, $0^{\circ} \mathrm{C}$
We now report further results of this TMSOTf-promoted reaction, and consider also possible elaborations of the isoxazolidines 8 .

Results and Discussion

We carried out a number of cycloadditions of simple (Z)aldonitrones with four model silyl enol ethers 7 lacking α substituents, in the presence of an equimolecular amount of TMSOTf in dichloromethane, at temperatures ranging from -20 to $20^{\circ} \mathrm{C}$. Besides isoxazolidines 8, 2,3-dihydroisoxazoles 9 are sometimes present as secondary products. The results are collected in Table 1.

When the steric demand of substituents is not severe, conversions into 5 -siloxyisoxazolidines 8 are good to excellent and isolated yields range from 70 to 92%. Exceptions are found in run $5\left(R^{1}=\mathrm{Bu}^{1}\right)$, run $7\left(\mathrm{R}^{1}=\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\right)$, and run $8\left(\mathrm{R}^{4}=\right.$ $\mathrm{SiBu}^{\mathrm{P}} \mathrm{Ph}_{2}$).

It is possible to carry out the reactions using catalytic amounts of TMSOTf (runs 2, 3), but higher reaction times or temperatures are required to achieve acceptable conversions. A detrimental effect of either prolonging the reaction time or increasing the reaction temperature is given by the formation of appreciable amounts of 2,3-dihydroisoxazoles 9 . It is worthy of note that there is an absence of 2,3-dihydroisoxazoles 9 when acetaldehyde silyl enol ethers are used under our standard conditions (1 mol equiv. of TMSOTf, $24 \mathrm{~h},-10$ to $0^{\circ} \mathrm{C}$), while they represent the major side-product when acetone and aceto-

[^0]Table 1 TMSOTf-promoted 1,3-dipolar cycloadditions ${ }^{a}$

Run	1		7		$T\left({ }^{\circ} \mathrm{C}\right)$	Product 8 (yield/\%)	cis/trans	Product 9 (yield/\%)
	R^{1}	R^{2}	R^{3}	R^{4}				
1	Et	$\mathrm{CH}_{2} \mathrm{Ph}$	H	$\mathrm{SiBu}^{\mathbf{t}} \mathrm{Me}_{2}$	-10	8a (92)	70/30	9a (0)
2	Et	$\mathrm{CH}_{2} \mathrm{Ph}$	H	$\mathrm{SiBu}^{\mathbf{t}} \mathrm{Me}_{2}$	0	8a (42) ${ }^{\text {b,c }}$	58/42	9a (17)
3	Et	$\mathrm{CH}_{2} \mathrm{Ph}$	H	$\mathrm{SiBu}^{\mathbf{t}} \mathrm{Me}_{2}$	20	8a (64) ${ }^{\text {b }}$	50/50	9a (32)
4	$\mathrm{Pr}^{\text {i }}$	$\mathrm{CH}_{2} \mathrm{Ph}$	H	$\mathrm{SiBu}^{t} \mathrm{Me}_{2}$	-10	8b (95)	38/62	9b (0)
5	Bu^{t}	$\mathrm{CH}_{2} \mathrm{Ph}$	H	$\mathrm{SiBu}^{\mathbf{t}} \mathrm{Me}_{2}$	-20	8c (52)	40/60	9c (0)
6	Ph	Me	H	$\mathrm{SiBu}^{\mathbf{t}} \mathrm{Me}_{2}$	0	8d (87)	36/74	9d (0)
7	$\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}$	$\mathrm{CH}_{2} \mathrm{Ph}$	H	$\mathrm{SiBu} \mathrm{Me}_{2}$	20	8e (59)	22/78	9 e (0)
8	Et	$\mathrm{CH}_{2} \mathrm{Ph}$	H	$\mathrm{SiBu}^{\mathbf{t}} \mathrm{Ph}_{2}$	0	8f (28)	80/20	9 f (0)
9	Et	$\mathrm{CH}_{2} \mathrm{Ph}$	Me	SiMe_{3}	0	8 g (91)	35/65	9g (6)
10	$\mathrm{Et}^{\text {i }}$	$\mathrm{CH}_{2} \mathrm{Ph}$	Me	SiMe_{3}	20	$8 \mathrm{~g}(70)^{\text {b }}$	40/60	9g (30)
11	Pr ${ }^{\text {i }}$	$\mathrm{CH}_{2} \mathrm{Ph}$	Me	SiMe_{3}	0	8h (88)	40/60	9 h (8)
12	Ph	Me	Me	SiMe_{3}	0	$8 \mathrm{8i}$ (77) ${ }^{\text {d }}$	40/60	9i (15)
13	$\mathrm{Et}^{\text {i }}$	$\mathrm{CH}_{2} \mathrm{Ph}$	Ph	SiMe_{3}	0	$8 \mathrm{8j}(76)^{\text {d }}$	$50 / 50$ $55 / 45$	9j (19)
14	$\operatorname{Pr}^{\text {i }}$	$\mathrm{CH}_{2} \mathrm{Ph}$	Ph	SiMe_{3}	0	8k (74) ${ }^{\text {e }}$	55/45	9k (21)

${ }^{a}$ All reactions were carried out in the presence of 1.0 mol equiv. of TMSOTf in 24 h , unless otherwise stated. ${ }^{b} 0.1$ Mol equiv. of TMSOTf was used.
${ }^{c}$ Reaction was run for $67 \mathrm{~h} .{ }^{d}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the reaction mixture; an attempted separation by flash chromatography of cis and trans isomers gave high conversion of compound 8 j into compound 9 j . ${ }^{e}$ Yields were determined by GCMS analysis of the crude reaction mixture; flash chromatography gave almost complete conversion of compound $\mathbf{8 k}$ into compound $\mathbf{9 k}$.
phenone silyl enol ethers are used (runs 9-14). Such observations can be accounted for by the greater stability of the $\mathrm{C}=\mathrm{C}$ double bond in 5-substituted 2,3-dihydroisoxazoles, particularly when $\mathrm{R}^{3}=\mathrm{Ph}$ (runs 13,14). In this regard, attempts to purify isoxazolidines $\mathbf{8 j}, \mathbf{k}$ by flash-chromatography failed since they were almost quantitatively converted by silica gel into compounds $9 \mathbf{j}, \mathbf{k}$.
cis-trans Diastereoselectivity is in general poor, the best results being obtained in the case of cis-isoxazolidines 8 a (d.e. 40%) ${ }^{*}$ and 8 (d.e. 60%) (runs 1,8) and in the case of transisoxazolidines 8 d (d.e. 38%) and 8 e (d.e. 56%) (runs 6,7). cis- and trans-Isoxazolidines 8 are not configurationally stable; in fact, they are in general easily separated by flash chromatography but undergo partial cis-trans equilibration in a few hours in the presence of catalytic amounts of TMSOTf in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, as well as upon storage in the pure state at room temperature within a month. For example, cis-8d is converted into a $56 / 44$ mixture of trans-8d and cis-8d after being stirred with 1 mol equiv. of TMSOTf in CHCl_{3} at $0^{\circ} \mathrm{C}$ for 3.5 h .

The assignment of the cis and trans stereochemistry to isoxazolidines 8 was made possible by the general observation that R_{f}-values of cis isomers are always higher than those of trans forms, and that multiplets relative to $4-\mathrm{H}$ protons of cis isomers are broader in ${ }^{1} \mathrm{H}$ NMR spectra, better resolved, and well separated ${ }^{2-4}$ (see Tables 2 and 3) compared with those for the trans isomers. In the case of 5 -disubstituted isoxazolidines $\mathbf{8 g}-\mathbf{j}$, NOE experiments confirmed the proposed stereochemical assignments.

We propose, for the TMSOTf-promoted cycloaddition process, the reaction mechanism depicted in Scheme 4. The first step involves the silylation of nitrone 1 by TMSOTf to give O siloxyiminium ion $\mathbf{1 0}$. The evidence of the formation of intermediate 10 was obtained by recording the NMR spectra of N propylidenebenzenemethanamine N-oxide in the presence of 1 mol equiv. of TMSOTf in CDCl_{3}. The comparison between δ values in the presence and in the absence of TMSOTf (Table 4) unambiguously confirmed that a strong complexation occurs. The subsequent 1,3 -addition of silyl enol ether to intermediate 10 affords, in our opinion, the positively charged intermediate 11, which then cyclises to give oxonium species 12. Elimination of TMSOTf from intermediate 12 generates cis- and trans-8 as products. The last process is reversible; in fact, the ${ }^{1} \mathrm{H}$ NMR spectrum of pure isoxazolidine trans-8a treated with 1 mol

[^1]

Scheme 4 Reagents: i, TMSOTf; ii, $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{2} \mathrm{Bu}^{t}$
equiv. of TMSOTf shows, after 5 min , a general line-broadening and deshielding of all signals. In particular, $5-\mathrm{H}$ is shifted downfield by $0.28 \mathrm{ppm}, 3-\mathrm{H}$ by 0.44 ppm , the two benzylic $\mathrm{CH}_{2} \mathrm{~s}$ by 0.37 and 0.32 ppm , respectively, and, finally, the multiplets of the two $4-\mathrm{H}$ protons collapse to $\delta 2.41$. These observations make us believe that oxonium ion 12 is actually in fast equilibrium with other species, namely 13 and 14 (Scheme 5).

Formation of hydroxylaminium ion 13 is supported by the observation that the strongest deshielding among the various protons is shown by $3-\mathrm{H}$ and benzylic protons. This is consistent with the fact that the energy of a nitrogen lone pair is generally higher than that of an oxygen lone pair, the energy gap being amplified by the so-called α-effect when $\mathrm{N}-\mathrm{O}$ bonds are involved. As concerns oxonium species 14, it is responsible for the partial silyl scrambling observed in runs 1-7. In fact, when acetaldehyde tert-butyldimethylsilyl enol ether was used, we always observed, besides 5-(tert-butyldimethylsiloxy)isoxazolines 8a-e, small amounts (generally limited to less than 5%) of 5-(trimethylsiloxy)isoxazolidines. These products have slightly lower R_{f}-values than do the corresponding tert-butyldimethylsiloxyisoxazolidines and arise by detachment of tert-butyl-

Table $2{ }^{1} \mathrm{H}$ NMR data for compounds 8 and 9 at 300 MHz

Compd.	3-H	4-H	5-H	Others
cis-8a	2.66-2.75 (m)	1.95 (ddd, J 2.4, 7.2, 12.6), 2.60 (ddd, J 6.0, 7.7, 12.6)	5.52 (dd, J2.4, 6.0)	$\begin{aligned} & 0.01(3 \mathrm{H}, \mathrm{~s}, \mathrm{SiMe}), 0.03(3 \mathrm{H}, \mathrm{~s}, \mathrm{SiMe}), 0.86\left(9 \mathrm{H}, \mathrm{~s}, \mathrm{SiBu}^{t}\right), 0.91 \\ & \left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Me}\right), 1.45-1.75\left(2 \mathrm{H}, \mathrm{~m}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.81(1 \mathrm{H}, \\ & \left.\mathrm{d}, J 13.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.03\left(1 \mathrm{H}, \mathrm{~d}, J 13.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.23-7.42(5 \mathrm{H}, \\ & \mathrm{m}, \mathrm{Ph}) \end{aligned}$
trans-8a	3.11-3.25 (m)	2.08 (ddd, J 4.8, 8.4, 12.3), 2.38 (ddd, J 1.0, $6.4,12.3$)	5.51 (dd, $J 1.0,4.8)$	$0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.14(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.89(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.34-1.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.46-$ $1.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.08\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.25(1 \mathrm{H}$, d, J 13.2, $\mathrm{CH}_{2} \mathrm{Ph}$), $7.22-7.46(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
cis-8b	2.61-2.72 (m)	$\begin{aligned} & 2.06 \text { (ddd, J 1.8, } 6.3 \text {, } \\ & 12.9), 2.37 \text { (ddd, } J 5.9, \\ & 8.7,12.9 \text {) } \end{aligned}$	5.52 (dd, J1.8, 5.9)	$0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}{ }^{t}\right), 0.91$ ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CH} M e_{2}$), $0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe} e_{2}\right), 1.90(1 \mathrm{H}$, octet, J6.7, CH Me 2), $3.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.98(1 \mathrm{H}, \mathrm{d}$, $\left.J 13.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.23-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
trans-85 ${ }^{\text {a }}$	3.02-3.12 (m)	$\begin{aligned} & 2.11-2.17(\mathrm{~m}, \mathrm{~B}), 2.17- \\ & 2.25(\mathrm{~m}, \mathrm{~A}), 2.29 \text { (ddd, } \\ & J 1.4,3.9,7.2, \text { A), } 2.30- \\ & 2.36(\mathrm{~m}, \text { B }) \end{aligned}$	5.49 (dd, J 1.4, 4.7)	0.10 ($1.2 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}, \mathrm{B}), 0.13$ (1.2 H, s, SiMe, B), 0.17 ($3.6 \mathrm{H}, \mathrm{s}$, SiMe, A), 0.87 ($1.8 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}, \mathrm{A}), 0.88(1.8 \mathrm{H}, \mathrm{d}, J$ 6.7, $\mathrm{CH} M e_{2}, \mathrm{~A}$), 0.91 (1.2 H, d, J6.7, CHMe 2 , B), $0.92(1.2 \mathrm{H}$, d, J 6.7, CHMe,$~ B), 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.68(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHMe} \mathrm{M}_{2}$), 4.06 (1 H , broad d, $J 13.4, \mathrm{CH}_{2} \mathrm{Ph}$), $4.28(0.4 \mathrm{H}, \mathrm{d}, J$ 13.4, $\left.\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{B}\right), 4.30\left(0.6 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.4, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{A}\right), 7.21-7.43$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
cis-8c	2.75 (dd, J 5.1, 10.2)	$\begin{aligned} & 2.05 \text { (ddd, J 2.7, 5.1, } \\ & 13.1), 2.46 \text { (ddd, } J 5.9 \text {, } \\ & 10.2,13.1 \text {) } \end{aligned}$	5.57 (dd, J2.7, 5.9)	$0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{l}}\right), 0.93$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{+}$), $3.92\left(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.03(1 \mathrm{H}, \mathrm{d}$, $\left.J 13.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.21-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
trans-8c	3.10 (t, J 7.7)	2.20-2.35 ($2 \mathrm{H}, \mathrm{m}$)	5.47-5.53 (m)	$0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.84$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}$), 0.93 $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{1}\right), 4.05\left(1 \mathrm{H}, \mathrm{d}, J 13.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.44(1 \mathrm{H}, \mathrm{d}$, $J 13.6, \mathrm{CH}_{2} \mathrm{Ph}$), $7.21-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
cis-8d	3.46 (m)	2.34 (ddd, J 2.6, 9.4, 13.1), 2.92 (ddd, J 6.1, 8.1, 13.1)	5.57 (dd, J2.6,6.1)	$0.16(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.20(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.96\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 2.58$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 7.28-7.48 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
trans-8d	4.04 (br t, $J \sim 8.6$)	2.44-2.50 ($2 \mathrm{H}, \mathrm{m}$)	5.56 (m)	$0.16(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.19(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.96\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{r}\right), 2.82$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $7.28-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
cis-8e	3.37-3.48 (m)	$\begin{aligned} & 2.02 \text { (ddd, } J \text { 3.2, } 9.7, \\ & 12.9), 2.60(\mathrm{dt}, J 6.4,12.9) \end{aligned}$	5.45 (dd, J3.2, 6.4)	$-0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.81\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}{ }^{t}\right)$, $1.67(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.72(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.61\left(1 \mathrm{H}, \mathrm{d}, J 14.1, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.1, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.25(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{CH}=), 7.18-7.40$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
trans-8e	3.95-4.07 (m)	2.10-2.24 ($2 \mathrm{H}, \mathrm{m}$)	5.42-5.47 (m)	0.10 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.93 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}$), 1.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.95-4.07$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 5.16 ($1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{CH}=$), $7.22-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
cis-8f	2.67-2.83 (m)	2.15 (ddd, J 2.4, 7.2, 12.7), 2.60 (ddd, J 6.1, 7.7, 12.7)	5.46 (dd, J2.4, 6.1)	$0.99\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{Me}\right), 1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.55-1.85(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.80\left(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 7.25-7.46$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.62-7.75 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
trans-8f	3.26-3.38 (m)	$\begin{aligned} & 2.08 \text { (ddd, } J 4.7,8.0, \\ & 13.1), 2.46-2.57(\mathrm{~m}) \end{aligned}$	5.52 (d, J 4.7)	$0.91\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{Me}\right), 1.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.48-1.75(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.21\left(1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.42(1 \mathrm{H}, \mathrm{d}, J 13.4$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 7.28-7.48(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.65-7.78(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
cis-8g	2.66-2.80 (m)	$\begin{aligned} & 2.16(\mathrm{dd}, J 9.4,12.5), 2.40 \\ & \text { (dd, J 7.4, 12.5) } \end{aligned}$		$0.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Me}\right), 1.47(3 \mathrm{H}, \mathrm{s}, 5-$ Me), $1.52-1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.03 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.22-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
trans-8g	3.15-3.27 (m)	$\begin{aligned} & 1.94(\mathrm{dd}, J 9.4,12.1), 2.49 \\ & \text { (dd, J 6.4, 12.1) } \end{aligned}$		$0.21\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Me}\right), 1.54(3 \mathrm{H}, \mathrm{s}, 5-$ Me), $1.61-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.07\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.2, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.2, \mathrm{CH}_{2} \mathrm{Ph}$), $7.21-7.42$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
cis-8h	2.67-2.79 (m)	2.10-2.30 ($2 \mathrm{H}, \mathrm{m}$)		$0.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe} e_{2}\right), 0.96(3 \mathrm{H}, \mathrm{d}$, J 6.7, CHMe e_{2}) $1.47(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.81-1.96(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{Me}_{2}$), 3.72 ($1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{CH}_{2} \mathrm{Ph}$), $4.02(1 \mathrm{H}, \mathrm{d}, J 13.5$, $\mathrm{CH}_{2} \mathrm{Ph}$), $7.25-7.46$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
trans-8h	3.11 (dt, J 7.0, 9.4)	$\begin{aligned} & 2.02(\mathrm{dd}, J 9.4,12.2), 2.41 \\ & \text { (dd, J7.0, 12.2) } \end{aligned}$		$0.21\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH} M e_{2}\right), 0.92(3 \mathrm{H}, \mathrm{d}$, $J 6.7, \mathrm{CHMe}_{2}$), $1.54(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.62-1.75(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH} \mathrm{Me}_{2}$), 4.06 ($1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{CH}_{2} \mathrm{Ph}$), $4.36(1 \mathrm{H}, \mathrm{d}, J 13.7$, $\mathrm{CH}_{2} \mathrm{Ph}$), 7.21-7.46 (5 H, m, Ph)
cis-8i	3.52 (dd, J7.7, 10.0)	$\begin{aligned} & 2.52(\mathrm{dd}, J 10.0,12.8), \\ & 2.67(\mathrm{dd}, J 7.7,12.8) \end{aligned}$		$\begin{aligned} & 0.26\left(9 \mathrm{H}, \mathrm{~s}, \mathrm{SiMe}_{3}\right), 1.56(3 \mathrm{H}, \mathrm{~s}, 5-\mathrm{Me}), 2.54(3 \mathrm{H}, \mathrm{~s}, \mathrm{NMe}), \\ & 7.25-7.47(5 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}) \end{aligned}$
trans-8i	4.04 (dd, J 5.8, 11.0)	$\begin{aligned} & 2.32(\text { br t, } J \sim 11.5), 2.58 \\ & \text { (dd, } J 5.8,12.0 \text {) } \end{aligned}$		$\begin{aligned} & 0.25\left(9 \mathrm{H}, \mathrm{~s}, \mathrm{SiMe}_{3}\right), 1.61(3 \mathrm{H}, \mathrm{~s}, 5-\mathrm{Me}), 2.76(3 \mathrm{H}, \mathrm{~s}, \mathrm{NMe}) \text {, } \\ & 7.23-7.46(5 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}) \end{aligned}$
$c i s-8 \mathbf{j}$	2.83-2.95 (m)	$\begin{aligned} & 2.46(\mathrm{dd}, J 8.9,12.7), 2.56 \\ & \text { (dd, } J 7.5,12.7) \end{aligned}$		$-0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.87(3 \mathrm{H}, \mathrm{t}, J 7.4$, $\mathrm{CH}_{2} \mathrm{Me}$), $1.60-1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.98(1 \mathrm{H}, \mathrm{d}, J 13.2$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.13\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.2, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.25-7.56(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
trans-8j	3.29-3.40 (m)	$\begin{aligned} & 2.14 \text { (dd, } J ~ 10.2,12.2), \\ & 2.81(\mathrm{dd}, J 5.6,12.2) \end{aligned}$		$0.19\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Me}\right), 1.51-1.68(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.23\left(1 \mathrm{H}, \mathrm{d}, J 13.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.34(1 \mathrm{H}, \mathrm{d}, J 13.6$, $\mathrm{CH}_{2} \mathrm{Ph}$), $7.25-7.57(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
trans-8k	3.27 (dt, J 6.3, 10.0)	$\begin{aligned} & 2.24(\mathrm{dd}, J 10.0,12.2), \\ & 2.72(\mathrm{dd}, J 6.3,12.2) \end{aligned}$		$\begin{aligned} & -0.02\left(9 \mathrm{H}, \mathrm{~s}, \mathrm{SiMe}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{~d}, J 6.9, \mathrm{CHMe} e_{2}\right), 0.92(3, \mathrm{H}, \\ & \left.\mathrm{d}, J 6.9, \mathrm{CH} M e_{2}\right), 1.65-1.75(1 \mathrm{H}, \mathrm{~m}, \mathrm{CHMe}, 4.23(1 \mathrm{H}, \mathrm{~d}, \\ & \left.J 14.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.39(1 \mathrm{H}, \mathrm{~d}, J 14.0, \mathrm{CH} \\ & \mathrm{m}, \mathrm{Ph}), 7.25-7.57(10 \mathrm{H}, \\ & \mathrm{m}) \end{aligned}$
9g	3.62-3.73 (m)	4.53 (d, J 2.3)		1.81 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2} \mathrm{Me}$), $1.37-1.48$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$), 1.85 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 3.84(1 H, d, J12.7, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.19(1 \mathrm{H}, \mathrm{d}, J 12.7$, $\mathrm{CH}_{2} \mathrm{Ph}$), $7.25-7.46$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
9h	3.49 (dq, J 1.1, 6.6)	4.52 (q, J 1.1)		$0.82\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH} M e_{2}\right), 1.50-1.62(1 \mathrm{H}$, octet, $J 6.6$, $\left.\mathrm{CHMe} \mathrm{M}_{2}\right), 1.85(3 \mathrm{H}, \mathrm{t}, J 1.1, \mathrm{Me}), 3.81\left(1 \mathrm{H}, \mathrm{d}, J 12.9, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.16\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.9, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.25-7.46$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)

Compd.	3-H	4-H	5-H	Others
9	4.62-4.71 (m)	4.62-4.71 (m)		1.92 (3 H, s, 5-Me), 2.90 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 7.23-7.46 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
9j	3.88 (dt, $J 2.7,6.9)$	5.33 (d, J 2.7)		$0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2} \mathrm{Me}\right)$, $1.49-1.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.90$ ($1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{CH}_{2} \mathrm{Ph}$), $4.32\left(1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.25-$ $7.58(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$
9k	3.69 (dd, J 2.8, 6.8)	5.32 (d, J 2.8)		$0.87\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{CH} M e_{2}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe} e_{2}\right), 1.65-$ $1.75\left(1 \mathrm{H}\right.$, octet, $J 6.8, \mathrm{CH} \mathrm{Me}_{2}$), $3.87\left(1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{CH}_{2} \mathrm{Ph}\right.$), $4.29\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.25-7.57(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$

${ }^{a}$ Two invertomers A and B were observed in the ratio $60: 40$.

Table $3{ }^{13} \mathrm{C}$ NMR data for compounds 8 and 9 at 75 MHz

Compd.	C-3	C-4	C-5	$\mathrm{CH}_{2} \mathrm{Ph}$	Ph	NMe	Others
cis-8a	67.0	44.3	96.0	61.1	126.8, 127.9, 129.1, 137.7		$\begin{aligned} & -5.2(\mathrm{MeSi}),-4.4(\mathrm{MeSi}), 10.9\left(\mathrm{MeCH}_{2}\right), 17.8\left(\mathrm{Me}_{3} \mathrm{C}\right), \\ & 25.4\left(\mathrm{MeCH}_{2}\right), 25.7\left(\mathrm{Me}_{3} \mathrm{C}\right) \end{aligned}$
trans-8a	65.4	44.4	98.1	64.9	127.0, 128.2, 129.1, 138.3		$\begin{aligned} & -5.2(\mathrm{MeSi}),-4.1(\mathrm{MeSi}), 11.1\left(\mathrm{MeCH}_{2}\right), 17.9\left(\mathrm{Me}_{3} \mathrm{C}\right), 25.7 \\ & \left(\mathrm{Me}_{3} \mathrm{C}\right), 27.0\left(\mathrm{MeCH}_{2}\right) \end{aligned}$
cis-8b	70.3	39.9	96.4	61.8	126.9, 127.9, 129.2, 138.0		$\begin{aligned} & -5.2(\mathrm{MeSi}),-4.3(\mathrm{MeSi}), 17.5\left(\mathrm{Me}_{2} \mathrm{CH}\right), 17.8\left(\mathrm{Me}_{3} \mathrm{C}\right), 20.7 \\ & \left(\mathrm{Me}_{2} \mathrm{CH}\right), 25.7\left(\mathrm{Me}_{3} \mathrm{C}\right), 29.3\left(\mathrm{Me}_{2} \mathrm{CH}\right) \end{aligned}$
trans-86 ${ }^{\text {a }}$	69.5	$\begin{aligned} & 41.5, \\ & 41.8 \end{aligned}$	$\begin{aligned} & 98.5, \\ & 98.7 \end{aligned}$	$\begin{aligned} & 65.5, \\ & 65.7 \end{aligned}$	126.9, 128.1, 128.9, 138.7		$-5.2(\mathrm{MeSi}),-4.1(\mathrm{MeSi}), 0.2(2 \times \mathrm{MeSi}), 17.9\left(\mathrm{Me}_{3} \mathrm{C}\right), 18.5$ $\left(\mathrm{Me}_{2} \mathrm{CH}\right), 18.6\left(\mathrm{Me}_{2} \mathrm{CH}\right), 20.3\left(2 \times \mathrm{Me}_{2} \mathrm{CH}\right), 25.7\left(\mathrm{Me}_{3} \mathrm{C}\right)$, $31.5\left(\mathrm{Me}_{2} \mathrm{CH}\right), 31.6\left(\mathrm{Me}_{2} \mathrm{CH}\right)$
cis-8c	73.1	40.1	97.0	64.4	126.8, 127.9, 129.1, 138.2		$\begin{aligned} & -5.4(\mathrm{MeSi}),-4.4(\mathrm{MeSi}), 17.8\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 25.7\left(\mathrm{Me}_{3} \mathrm{CSi}\right), \\ & 27.2\left(\mathrm{Me}_{3} \mathrm{C}\right), 33.8\left(\mathrm{Me}_{3} \mathrm{C}\right) \end{aligned}$
trans-8c	72.5	40.5	99.9	66.7	126.8, 128.0, 128.9, 139.0		$\begin{aligned} & -5.4(\mathrm{MeSi}),-4.2(\mathrm{MeSi}), 17.8\left(\mathrm{Me}_{3} \mathrm{CSi}\right), 25.7\left(\mathrm{Me}_{3} \mathrm{CSi}\right), \\ & 26.5\left(\mathrm{Me}_{3} \mathrm{C}\right), 33.5\left(\mathrm{Me}_{3} \mathrm{C}\right) \end{aligned}$
cis-8d	73.6	50.1	95.8		127.8, 128.0, 128.5, 138.7	43.2	-4.9 (MeSi), - 4.1 (MeSi$), 18.0\left(\mathrm{Me}_{3} \mathrm{C}\right), 25.8$ ($\left.\mathrm{Me}_{3} \mathrm{C}\right)$
trans-8d	70.2	48.9	97.0		127.4, 127.5, 128.4, 139.3	46.5	-5.1 (MeSi), -4.0 (MeSi), $17.8\left(\mathrm{Me}_{3} \mathrm{C}\right), 25.7\left(\mathrm{Me}_{3} \mathrm{C}\right)$
cis-8e	59.9	46.3	95.9	65.2	126.7, 127.8, 128.8, 138.0		$\left.-5.1(\mathrm{MeSi}),-4.4(\mathrm{MeSi}), 17.9(=\mathrm{CMe})_{2}\right), 18.4(=\mathrm{CMe} 2), 18.4$ $\left(\mathrm{Me}_{3} \mathrm{C}\right), 25.9\left(\mathrm{Me}_{3} \mathrm{C}\right), 122.4(\mathrm{CH}=), 136.7\left(=\mathrm{CMe}_{2}\right)$
trans-8e	62.3	45.5	96.9	63.3	126.9, 128.1, 128.9, 138.3		$-5.1(\mathrm{MeSi}),-4.0(\mathrm{MeSi}), 17.9\left(=\mathrm{CMe}_{2}\right), 18.2\left(=\mathrm{CMe}_{2}\right)$, $18.2\left(\mathrm{Me}_{3} \mathrm{C}\right), 25.7\left(\mathrm{Me}_{3} \mathrm{C}\right), 123.1(\mathrm{CH}=), 135.9\left(=\mathrm{CMe}_{2}\right)$
cis-8f	67.0	44.3	96.3	61.2	$\begin{aligned} & 126.9,127.3,127.5,127.7 \text {, } \\ & 128.0,129.1,129.4,129.5, \\ & 133.4,133.9,135.6,135.9 \\ & 137.8 \end{aligned}$		$10.9\left(\mathrm{MeCH}_{2}\right), 19.1\left(\mathrm{Me}_{3} \mathrm{C}\right), 25.5\left(\mathrm{MeCH}_{2}\right), 26.6\left(\mathrm{Me}_{3} \mathrm{C}\right)$
trans-8f	65.4	44.4	98.6	65.5	$\begin{aligned} & 127.6,127.7,128.2,129.2 \text {, } \\ & 129.6,129.7,134.8,135.2, \\ & 135.5,135.8 \end{aligned}$		$11.1\left(\mathrm{MeCH}_{2}\right), 19.0\left(\mathrm{Me}_{3} \mathrm{C}\right), 26.6\left(\mathrm{Me}_{3} \mathrm{C}\right), 26.9\left(\mathrm{MeCH}_{2}\right)$
cis-8g	68.3	50.4	103.3	61.4	$126.9,127.8,129.6,137.7$		$1.5\left(\mathrm{Me}_{3} \mathrm{Si}\right), 10.6\left(\mathrm{MeCH}_{2}\right), 24.9(5-\mathrm{Me}), 29.0\left(\mathrm{MeCH}_{2}\right)$
trans-8g	67.0	49.5	105.4	64.2	$126.9,128.1,128.9,138.2$		$2.0\left(\mathrm{Me}_{3} \mathrm{Si}\right), 11.0\left(\mathrm{MeCH}_{2}\right), 26.7(5-\mathrm{Me}), 30.1\left(\mathrm{MeCH}_{2}\right)$
cis-8h	72.0	45.0	103.7	62.1	127.0, 127.9, 129.7, 138.2		$\begin{aligned} & 1.4\left(\mathrm{Me}_{3} \mathrm{Si}\right), 17.3\left(\mathrm{Me}_{2} \mathrm{CH}\right), 20.9\left(\mathrm{Me}_{2} \mathrm{CH}\right), 24.5(5-\mathrm{Me}), 29.2 \\ & \left(\mathrm{Me}_{2} \mathrm{CH}\right) \end{aligned}$
trans-8h	71.2	46.8	105.9	65.2	126.8, 128.1, 128.8, 138.7		$\begin{aligned} & 1.9\left(\mathrm{Me}_{3} \mathrm{Si}\right), 18.3\left(\mathrm{Me}_{2} \mathrm{CH}\right), 20.5\left(\mathrm{Me}_{2} \mathrm{CH}\right), 26.2(5-\mathrm{Me}), 31.4 \\ & \left(\mathrm{Me}_{2} \mathrm{CH}\right) \end{aligned}$
cis-8i	74.4	55.6	103.4		127.8, 127.9, 128.5, 138.8	43.0	$1.8\left(\mathrm{Me}_{3} \mathrm{Si}\right), 28.5(5-\mathrm{Me})$
trans-8i	71.7	53.8	104.6		$\begin{aligned} & 127.5,127.7,128.1,128.2 \text {, } \\ & \text { 139.9. } \end{aligned}$	45.5	2.1 ($\mathrm{Me}_{3} \mathrm{Si}$), 29.7 (5-Me)
cis-8j	68.1	53.1	104.2	61.5	$\begin{aligned} & 125.6,125.7,127.1,127.5 \text {, } \\ & 127.9,128.4,128.8,129.2 \\ & \text { 136.6, 145.4 } \end{aligned}$		$1.1\left(\mathrm{Me}_{3} \mathrm{Si}\right), 10.6\left(\mathrm{MeCH}_{2}\right), 25.0\left(\mathrm{MeCH}_{2}\right)$
trans.8j	67.2	51.9	105.7	63.5	$\begin{aligned} & 125.8,127.0,127.4,127.8, \\ & 128.4,129.6,138.2,144.0 \end{aligned}$		$1.7\left(\mathrm{Me}_{3} \mathrm{Si}\right), 11.0\left(\mathrm{MeCH}_{2}\right), 25.7\left(\mathrm{MeCH}_{2}\right)$
trans-8k	70.8	48.1	106.0	64.1	$\begin{aligned} & 125.8,126.8,127.6,127.7 \\ & 128.4,129.0,139.2 \end{aligned}$		1.7 ($\left.\mathrm{Me}_{3} \mathrm{Si}\right), 17.7$ (Me), 20.6 (Me), 30.1 ($\left.\mathrm{Me}_{2} \mathrm{CH}\right)$
9j	71.8	95.3	152.2	63.2	$\begin{aligned} & 125.5,127.0,127.1,127.3 \text {, } \\ & \text { 127.4, 127.6, 128.0, 128.3, } \\ & \text { 128.4, 128.5, 128.7, 129.8, } \\ & 136.6 \end{aligned}$		$9.9\left(\mathrm{CH}_{2} \mathrm{Me}\right), 29.2\left(\mathrm{CH}_{2} \mathrm{Me}\right)$
9k	76.4	93.5	152.4	63.8	$\begin{aligned} & 125.5,127.3,128.1,128.2, \\ & 128.3,129.6,136.7 \end{aligned}$		18.2 (Me), 18.5 (Me), $33.7\left(\mathrm{Me}_{2} \mathrm{CH}\right)$

${ }^{a}$ Two invertomers were observed in the ratio 60:40.
dimethylsilyl trifluoromethanesulfonate from oxonium intermediate 14. Moreover, intermediate 14 is probably responsible for the already mentioned TMSOTf-induced cis-trans equilibration of compounds 8 .

5-Siloxyisoxazolidines $\mathbf{8}$ are versatile synthetic intermediates. First of all, acidic protodesilylation of compounds $\mathbf{8}$ occurs in good yield by the action of aqueous trifluoroacetic acid (TFA) at $20^{\circ} \mathrm{C}$. For example, diastereoisomeric mixtures of cis- and
trans-8a,-8d and -8i were converted into the corresponding 5hydroxyisoxazolidines 15a, 15d and 15i, which were isolated by flash chromatography. The same 5 -hydroxyisoxazolidines 15 could be obtained by TFA-promoted hydration of 2,3dihydroisoxazoles 9 (Scheme 6).
cis- and trans-5-Hydroxyisoxazolidines 15 undergo fast equilibration (ring-chain tautomerism) and appear as single spots on TLC using different solvents (traces of open product
are detected in the $v_{\mathrm{C}=0}$ region of the IR spectrum of compound 15i). It is interesting to note that while isoxazolidines 15g-k, deriving from ketone silyl enol ethers, could be obtained, in principle, following a different route, namely the conjugate addition of N-alkylhydroxylamines to α, β-unsaturated ketones ${ }^{7}$ (the analogous reaction involving α, β-unsaturated esters is

Scheme 5

Scheme 6 Reagents: i, aq. TFA
Table 4 NMR spectra of N-propylidene- N-trimethylsiloxybenzylammonium triflate 10a and the corresponding nitrone 1a

${ }^{a}$ Upon irradiation at $\delta_{\mathrm{H}} 8.60$, the signal at $\delta_{\mathrm{H}} 2.75$ appears as a quartet ($J 7.7 \mathrm{~Hz}$).
known to lead to isoxazolidin- 5 -ones ${ }^{8}$), no reports are found in the literature about the analogous addition to α, β-unsaturated aldehydes, which should give access to isoxazolidines 15a-f.* We demonstrated that the reaction of N-benzylhydroxylamine hydrochloride in aq. ethanol with 3 -methylbut-2-enal in the presence of sodium acetate regioselectively affords, via 1,3addition, 3-methyl-but-2-enylidenebenzylamine N-oxide (used in run 7 of Table 1).

The second aspect of the chemistry of isoxazolidines we wish to discuss is the possibility of carrying out different chemoselective reductions to open-chain derivatives. An example is offered by the reaction of compound 15 d with NaBH_{4} which affords hydroxylamino alcohol 16d in high yield (Scheme 7).

Scheme 7 Solvent: i, MeOH
On the other hand, reduction of 5 -siloxyisoxazolidines derived from ketone silyl enol ethers, such as compound 8 g , with $\mathrm{Zn} / \mathrm{Cu}$ couple in hot aq. acetic acid gives 4-(benzylamino)hexan-2one 17 g via a chemoselective reduction of the $\mathrm{N}-\mathrm{O}$ bond (Scheme 8). The two-step sequence involving nitrone silyl enol ether cycloaddition followed by $\mathrm{Zn} / \mathrm{Cu}$ couple reduction represents a synthetic alternative to the Mannich reaction.

8 g

17g

Scheme 8 Solvent: i, AcOH

The last topic we wish to discuss are the preliminary results on the most interesting reactions applied to isoxazolidines 8 from a synthetic point of view, since they construct a new carbon-carbon bond. The goal was to add silylated carbon nucleophiles to isoxazolidines 8 in the presence of Lewis acids. ${ }^{10}$ Model isoxazolidine $8 \mathbf{d}$ was found to be less reactive than simple acetals, and cross-coupling reactions with allyltrimethylsilane and cyanotrimethylsilane could only be effected in the presence of TMSOTf at $50-75^{\circ} \mathrm{C}$ (Scheme 9, Table 5), while other classical Lewis acids like $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{ZnI}_{2}, \mathrm{TiCl}_{4}$ proved to be ineffective. Under these conditions cis- and trans-8 undergo a fast equilibration but, unfortunately, no good diastereoselectivity in the formation of the new stereogenic $C-5$ centre was achieved as a consequence of thermodynamic control. Since the most likely reactive intermediate involved in the coupling reaction corresponds to species 14 , that is the product of the cycloaddition, it is possible to carry out the processes in one

[^2]Table 5 TMSOTf-Promoted coupling of compound 8d with silylated carbon nucleophiles

	Run	Nucleophile	Solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	$t(\mathrm{~h})$	Product	Yield(\%) $($ (cis/trans $)$
1	allyltrimethylsilane	CHCl_{3}	75	8	18d	$60(45 / 55)$	
2	allyltrimethylsilane	toluene	70	5	18d	$44(15 / 85)$	
	cyanotrimethylsilane	CHCl_{3}	50	8	19d	$53(70 / 30)$	

Scheme 9 Reagents: i, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{SiMe}_{3}$, TMSOTf; ii, $\mathrm{Me}_{3} \mathrm{SiCN}$, TMSOTf
pot by exploiting the same TMSOTf to promote both the cycloaddition and the coupling reactions. So, after having stirred N -benzylidenemethylamine N -oxide with 1.4 mol equiv. of TMSOTf and 1.1 mol equiv. of tert-butyl(dimethyl)vinyloxysilane in CHCl_{3} at $0^{\circ} \mathrm{C}$ for 23 h , it is sufficient to add allyltrimethylsilane (3 mol equiv.) and to heat at $60^{\circ} \mathrm{C}$ for 7 h . cis- and trans-2-Methyl-3-phenyl-5-(prop-2-enyl)isoxazolidines (cis- and trans-18d) were formed in the ratio 55:45 and were isolated, after the usual work-up, in 44% overall yield.

Unfortunately, silyl enol ethers cannot be used in TMSOTfmediated cross-coupling reactions with isoxazolidines 8 since the reaction product is more reactive towards the nucleophile than is substance 8 , and oligomerisation cannot be suppressed.

Conclusions

The cycloaddition of nitrones and silyl enol ethers, when promoted by TMSOTf, takes place at $0^{\circ} \mathrm{C}$ or below through a stepwise mechanism which involves a series of silylated intermediates. The final 5 -siloxyisoxazolidines, again in the presence of TMSOTf, undergo a further reaction with a different silylated carbon nucleophile at the acetalic C-5 carbon under more drastic conditions ($50-70^{\circ} \mathrm{C}$). This makes possible a threecomponent one-pot coupling process where the same TMSOTf promotes first the 1,3-dipolar cycloaddition of the nitrone and the silyl enol ether, and then the nucleophilic substitution reaction with the second silylated compound.

Besides this interesting approach to a variety of synthetically flexible 3,5-disubstituted isoxazolidines, we have shown that chemoselective reductions of 5 -siloxyisoxazolidines leading to Mannich products and N-hydroxy-1,3-amino alcohols are possible.

Experimental

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of CDCl_{3} solutions were recorded at 300 and 75 MHz , respectively with a VARIAN GEMINI 300 spectrometer. Chemical shifts are reported in ppm relative to internal standard $\mathrm{Me}_{4} \mathrm{Si}(\delta)$. NMR spectra of products 8 and 9 are reported in Tables 2 and 3, NMR spectra of isoxazolidines 15, 18 and 19 are collected in Tables 6 and 7. IR spectra were recorded on Perkin-Elmer PE 682 spectrophotometer. High-resolution mass spectra (HRMS) were obtained using a VG 7070 instrument at 70 eV . Gas chromatographic-mass spectrometric analyses (GCMS) were performed with an HP 5890 cross-linked methyl silicone glass capillary column (0.33 mm film thickness) connected to an HP 5970 quadrupole mass detector. The column temperature was programmed from 50 to $250^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ and was then held at $250^{\circ} \mathrm{C}$ for 10 min . The helium carrier gas flow rate was $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. Analytical TLC was performed with Kieselgel 60 F_{254} plates and mixed solvents [cyclohexane (C), diethyl ether (E), ethyl acetate (A)]. Kieselgel 60 ($230-400$ mesh) was used for flash chromatography. Reactions were performed in oven-dried
glassware under an atmosphere of dry argon. Dichloromethane and chloroform were purified before use (water content was $8 \pm 1 \mathrm{ppm}$). All nitrones, ${ }^{11}$ tert-butyl(dimethyl)vinyloxysilane, ${ }^{12}$ tert-butyl(diphenyl)vinyloxysilane and trimethyl(1phenylvinyloxy)silane ${ }^{13}$ were prepared according to literature procedures; trimethyl-(1-methylvinyloxy)silane was purchased by Aldrich.

Reaction of N -Propylidenebenzylamine N -Oxide with tertButyl(dimethyl)vinyloxysilane. General Procedure.-To a stirred solution of nitrone $\mathbf{1 a}(163 \mathrm{mg}, 1 \mathrm{mmol})$ and silyl enol ether 7 a $(0.24 \mathrm{~g}, 1.5 \mathrm{mmol})$ in dry dichloromethane $\left(8 \mathrm{~cm}^{3}\right)$ was added drop-by-drop (10 min) a solution of TMSOTf $\left(0.21 \mathrm{~cm}^{3}\right.$, $1.1 \mathrm{mmol})$ in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ at $-10^{\circ} \mathrm{C}$. After 24 h , the reaction mixture was quenched with saturated aq. NaHCO_{3} ($2 \mathrm{~cm}^{3}$); the two liquid layers were separated and the aqueous phase was extracted with diethyl ether $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic layers were washed with brine ($1 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to dryness. Flash chromatography (C-A 98:2) of the residue gave the products cis-8a ($0.1 \mathrm{~g}, 28 \%$) and trans-8a ($0.2 \mathrm{~g}, 64 \%$), as pale yellow oil.
cis-2-Benzyl-5-(tert-butyldimethylsiloxy)-3-ethylisoxazolidine cis-8a (Found: $\mathrm{M}^{+}, 321.2128 \quad \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Si}$ requires M , 321.2124); TLC (C-E 85:15) $R_{\mathrm{f}} 0.71 ; m / z(\%) 321\left(\mathrm{M}^{+}, 22\right), 292$ $\left(\mathrm{M}^{+}-\mathrm{Et}, 10\right), 264\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}, 6\right), 199\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{NOH}\right.$, 100), 157 (27), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 74\right)$ and 73 (53).
trans-2-Benzyl-5-(tert-butyldimethylsiloxy)-3-ethylisoxazolidine trans-8a (Found: $\mathrm{M}^{+}, 321.2121$); TLC (C-E 85:15) $\boldsymbol{R}_{\mathrm{f}}$ $0.43 ; m / z(\%) 321\left(\mathrm{M}^{+}, 20\right), 292\left(\mathrm{M}^{+}-\mathrm{Et}, 11\right), 264\left(\mathrm{M}^{+}-\mathrm{Bu}^{\mathrm{t}}\right.$, 7), 199 ($\left.\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{NOH}, 100\right), 157$ (25), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 72\right)$ and 73 (55).
cis-2-Benzyl-5-(tert-butyldimethylsiloxy)-3-isopropylisoxazolidine cis-8b. Purified by flash chromatography (C-E 96:4) as a clear oil (Found: $\mathrm{M}^{+}, 335.2278 . \mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}$ requires M , 335.2280); TLC (C-E 85:15) $R_{\mathrm{f}} 0.73 ; m / z(\%) 335\left(\mathrm{M}^{+}, 11\right), 292$ $\left(\mathrm{M}^{+}-\mathrm{Pr}^{i}, 52\right), 278\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}, 8\right), 250(18), 213\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{PhCH}_{2} \mathrm{NOH}, 33\right), 171$ (10), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 100\right), 75$ (18) and 73 (30).
trans-2-Benzyl-5-(tert-butyldimethylsiloxy)-3-isopropylisox-
azolidine trans-8b. Purified by flash chromatography (C-E 96:4) as a clear oil (Found: ${ }^{+}, 335.2280$); TLC (C-E 85:15) R_{f} $0.43 ; m / z(\%) 335\left(\mathrm{M}^{+}, 13\right), 292\left(\mathrm{M}^{+}-\mathrm{Pr}^{\mathrm{i}}, 50\right), 278\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{Bu}^{t}, 10\right), 250$ (17), 213 ($\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{NOH}, 31$), 171 (9), 91 $\left(\mathrm{CH}_{2} \mathrm{Ph}, 100\right), 75$ (18) and 73 (28).
cis-2-Benzyl-3-(tert-butyl)-5-(tert-butyldimethylsiloxy)isoxazolidine cis-8c. Purified by flash chromatography (C-E 99:1) as an oil (Found: $\mathrm{M}^{+}, 349.2442 . \mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{2}$ Si requires M , 349.2437); TLC (C-E 85:15) $R_{\mathrm{f}} 0.86 ; m / z(\%) 349\left(\mathrm{M}^{+}, 2\right)$, $292\left(\mathrm{M}^{+}-\mathrm{Bu}^{\mathbf{t}}, 94\right), 250(8), 160(10), 91\left(\mathrm{CH}_{2} \mathrm{Ph}, 100\right), 75$ (15) and 73 (19).
trans-2-Benzyl-3-(tert-butyl)-5-(tert-butyldimethylsiloxy)isoxazolidine trans-8c. Purified by flash chromatography (C-E 99:1) as an oil (Found: M^{+}, 349.2439); TLC (C-E 85:15) $\boldsymbol{R}_{\mathrm{f}}$ $0.76 ; m / z(\%) 349\left(\mathrm{M}^{+}, 2\right), 292\left(\mathrm{M}^{+}-\mathrm{Bu}^{\mathrm{t}}, 90\right), 250(7), 160$ (11), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 100\right), 75$ (14) and 73 (20).
cis-5-(tert-Butyldimethylsiloxy)-2-methyl-3-phenylisoxazol-
idine cis-8d. Purified by flash chromatography (C-E 95:5) as a pale yellow oil (Found: M^{+}, 293.1810. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si}$ requires M, 293.1811); TLC (C-E 85:15) $R_{\mathrm{f}} 0.67$; $m / z(\%) 293\left(\mathrm{M}^{+}, 7\right)$, $247\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{NOH}, 100\right), 205(43), 135\left[\mathrm{CH}_{3} \mathrm{~N}(\mathrm{O}) \mathrm{CHPh}\right.$, 6], $134\left[\mathrm{CH}_{3} \mathrm{~N}(\mathrm{O}) \mathrm{CPh}, 18\right], 132(16), 105(18), 91\left(\mathrm{CH}_{2} \mathrm{Ph}, 28\right)$, 75 (19), 73 (80) and 41 (7).
trans-5-(tert-Butyldimethylsiloxy)-2-methyl-3-phenylisoxazolidine trans-8d. Purified by flash chromatography (C-E 95:5) as a pale yellow oil (Found: $\mathrm{M}^{+}, 293.1806$); TLC (C-E 85:15) R_{f} $0.37 ; \mathrm{m} / \mathrm{z}(\%) 293\left(\mathrm{M}^{+}, 6\right), 247\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{NOH}, 100\right), 205$ (45), $135\left[\mathrm{CH}_{3} \mathrm{~N}(\mathrm{O}) \mathrm{CHPh}, 4\right], 134\left[\mathrm{CH}_{3} \mathrm{~N}(\mathrm{O}) \mathrm{CPh}, 19\right], 132$ (18), 105 (18), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 30\right), 75$ (17) and 73 (78).
cis-2-Benzyl-5-(tert-butyldimethylsiloxy)-3-(2-methylprop-1-
enyl)isoxazolidine cis-8e. Purified by flash chromatography (C-E 95:5) as a pale yellow oil (Found: $\mathrm{M}^{+}, 347.2283$. $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2}$ Si requires $\mathrm{M}, 347.2280$); TLC (C-E 80:20) $R_{\mathrm{f}} 0.85$; $m / z(\%) 347\left(\mathrm{M}^{+}, 6\right), 290\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}, 2\right), 226(18), 225\left(\mathrm{M}^{+}-\right.$ $\mathrm{PhCH}_{2} \mathrm{NOH}, 92$), 208 (17), 174 (22), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 100\right), 75$ (44) and 73 (68).
trans-2-Benzyl-5-(tert-butyldimethylsiloxy)-3-(2-methylprop-1-enyl)isoxazolidine trans-8e. Purified by flash chromatography (C-E 95:5) as a pale yellow oil (Found: $\mathrm{M}^{+}, 347.2276$); TLC (C-E 80:20) $R_{\mathrm{f}} 0.57 ; \mathrm{m} / \mathrm{z}(\%) 347\left(\mathrm{M}^{+}, 5\right), 226(17), 225\left(\mathrm{M}^{+}-\right.$ $\mathrm{PhCH}_{2} \mathrm{NOH}, 90$), 208 (16), 174 (23), 103 (11), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 100\right)$, 75 (42) and 73 (70).
cis-2-Benzyl-5-(tert-butyldiphenylsiloxy)-3-ethylisoxazolidine cis-8f. Purified by flash chromatography (C-E 96:4) as a pale yellow oil (Found: $\mathrm{M}^{+}, 445.2440 . \mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{Si}$ requires M , 445.2437); TLC (C-E 90:10) $R_{\mathrm{f}} 0.58 ; m / z(\%) 445\left(\mathrm{M}^{+}, 11\right), 388$ ($\mathrm{M}^{+}-\mathrm{Bu}^{t}, 17$), 323 ($\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{NOH}, 65$), 254 (14), 199 (100), 197 (26), 135 (64), 91 ($\mathrm{CH}_{2} \mathrm{Ph}, 98$), 77 ($\mathrm{Ph}, 23$) and 75 (44).
trans-2-Benzyl-5-(tert-butyldiphenylsiloxy)-3-ethylisoxazol-
idine trans-8f. Purified by flash chromatography (C-E 96:4) as a pale yellow oil (Found: M ${ }^{+}$, 445.2432); TLC (C-E 90:10) R_{f} $0.25 ; m / z(\%) 445\left(\mathrm{M}^{+}, 10\right), 338\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}, 18\right), 323\left(\mathrm{M}^{+}-\right.$ $\mathrm{PhCH}_{2} \mathrm{NOH}, 65$), 254 (13), 199 (99), 197 (27), 137 (20), 135 (60), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 100\right), 77(\mathrm{Ph}, 20)$ and 75 (42).
cis-2-Benzyl-3-ethyl-5-methyl-5-(trimethylsiloxy)isoxazolidine cis-8g. Purified by flash chromatography (C-E 98:2) as a pale yellow oil (Found: C, 65.4; H, 9.2; N, 4.7. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si}$ requires $\mathrm{C}, 65.5 ; \mathrm{H}, 9.3 ; \mathrm{N}, 4.8 \%$); TLC (C-E $80: 20$) $R_{\mathrm{f}} 0.75 ; \mathrm{m} / \mathrm{z}$ $(\%) 293\left(\mathrm{M}^{+}, 14\right), 171\left(\mathrm{PhCH}_{2} \mathrm{NOH}, 100\right), 130(7), 91\left(\mathrm{CH}_{2} \mathrm{Ph}\right.$, 68), 82 (9), 75 (12), 73 (32) and 43 (8).
trans-2-Benzyl-3-ethyl-5-methyl-5-(trimethylsiloxy)isoxazolidine trans-8g. Purified by flash chromatography (C-E 98:2) as a pale yellow oil (Found: C, 65.4; H, 9.2; N, 4.7 \%); TLC (C-E $80: 20) R_{\mathrm{f}} 0.39 ; m / z(\%) 293\left(\mathrm{M}^{+}, 12\right), 171\left(\mathrm{PhCH}_{2} \mathrm{NOH}, 100\right)$, 130 (4), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 70\right), 82$ (8), 75 (14), 73 (34) and 43 (7).

2-Benzyl-3-ethyl-5-methyl-2,3-dihydroisoxazole 9g. Purified by flash chromatography ($\mathrm{C}-\mathrm{E} \mathrm{98:2}$) as a pale yellow oil (Found: C, 76.8; H, 8.4; N, 7.0. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 76.8 ; \mathrm{H}$, 8.4; N, 6.9\%); TLC (C-E 80:20) $R_{\mathrm{f}} 0.55$; $v_{\text {max }} / \mathrm{cm}^{-1} 1670(\mathrm{C}=\mathrm{C})$. cis-2-Benzyl-3-isopropyl-5-methyl-5-(trimethylsiloxy)isoxazolidine cis-8h. Purified by flash chromatography (C-E 99:1) as a pale yellow oil (Found: C, 66.3; H, 9.5; N, 4.6. $\mathrm{C}_{17}{ }^{-}$ $\mathrm{H}_{29} \mathrm{NO}_{2}$ Si requires C, 66.4; $\mathrm{H}, 9.5 ; \mathrm{N}, 4.6 \%$); TLC (C-E 85:15) $R_{\mathrm{f}} 0.68 ; m / z(\%) 307\left(\mathrm{M}^{+}, 3\right), 264\left(\mathrm{M}^{+}-\mathrm{Pr}^{\mathrm{i}}, 11\right), 185\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{PhCH}_{2} \mathrm{NOH}, 31\right), 174$ (23), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 100\right), 73$ (11) and 43 ($\mathrm{Pr}^{\mathrm{i}}, 6$).
trans-2-Benzyl-3-isopropyl-5-methyl-5-(trimethylsiloxy)isoxazolidine trans-8h. Purified by flash chromatography (C-E 99:1) as a pale yellow oil (Found: C, 66.5; H, 9.4; N, 4.6\%); TLC (C-E 85:15) $R_{\mathrm{f}} 0.52 ; m / z(\%) 307\left(\mathrm{M}^{+}, 4\right), 264\left(\mathrm{M}^{+}-\mathrm{Pr}^{\mathrm{i}}\right.$, 10), 185 ($\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{NOH}, 33$), 174 (21), 91 ($\mathrm{CH}_{2} \mathrm{Ph}, 100$), 73 (11) and 43 ($\operatorname{Pr}^{\mathrm{i}}, 4$).

2-Benzyl-3-isopropyl-5-methyl-2,3-dihydroisoxazole 9h. Purified by flash chromatography (C-E 99:1) as an oil (Found: C, $77.4 ; \mathrm{H}, 8.7 ; \mathrm{N}, 6.5 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 77.4 ; \mathrm{H}, 8.8 ; \mathrm{N}, 6.5 \%$); TLC (C-E 85:15) $R_{\mathrm{f}} 0.85 ; v_{\text {max }} / \mathrm{cm}^{-1} 1670(\mathrm{C}=\mathrm{C})$.
cis-2,5-Dimethyl-3-phenyl-5-(trimethylsiloxy)isoxazolidine cis-8i. Purified by flash chromatography (C-E 98:2) as a pale yellow oil(Found: C, 63.4; $\mathrm{H}, 8.7 ; \mathrm{N}, 5.3 . \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2}$ Si requires $\mathrm{C}, 63.4 ; \mathrm{H}, 8.7 ; \mathrm{N}, 5.3 \%$); TLC (C-E $85: 15$) $R_{\mathrm{f}} 0.78 ; m / z(\%) 265$ $\left(\mathrm{M}^{+}, 4\right), 219\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{NOH}, 100\right), 146(11), 134(13), 91(5), 75$ (18) and 73 (51).
trans-2,5-Dimethyl-3-phenyl-5-(trimethylsiloxy)isoxazolidine trans-8i. Purified by flash chromatography (C-E 98:2) as a pale yellow oil (Found: C, 63.3; H, 8.7; N, 5.3\%); TLC (C-E 85: 15) $R_{\mathrm{f}} 0.24 ; m / z(\%) 265\left(\mathrm{M}^{+}, 4\right), 219\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{NOH}\right.$, 100), 146 (15), 134 (11), 91 (4), 75 (14) and 73 (38).

2,5-Dimethyl-3-phenyl-2,3-dihydroisoxazole 9i Purified by
flash chromatography (C-E 98:2) as a pale yellow oil (Found: $\mathrm{C}, 75.4 ; \mathrm{H}, 7.5 ; \mathrm{N}, 8.1 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}$ requires $\mathrm{C}, 75.4 ; \mathrm{H}, 7.5 ; \mathrm{N}$, 8.0%); TLC (C-E 85:15) $R_{\mathrm{f}} 0.38 ; v_{\text {max }} / \mathrm{cm}^{-1} 1670$ (C=C).
cis-2-Benzyl-3-ethyl-5-phenyl-5-(trimethylsiloxy)isoxazol-
idine cis-8j. Not isolated. TLC (C-E $85: 15$) $R_{\mathrm{f}} 0.80$. NMR signals reported in Tables 1 and 2 are extracted from the spectra of a $2: 1$ mixture of cis-8j and $9 \mathbf{j}$.
trans-2-Benzyl-3-ethyl-5-phenyl-5-(trimethylsiloxy)isoxazolidine trans-8j. Not isolated. TLC (C-E 85:15) $R_{\mathrm{f}} 0.61$. NMR signals reported in Tables 1 and 2 are extracted from the spectra of a 3:2 mixture of trans-8j and $9 \mathbf{j}$.

2-Benzyl-3-ethyl-5-phenyl-2,3-dihydroisoxazole $9 \mathbf{j}$. Purified by flash chromatography (C-E 97:3) as a clear oil (Found: C, 81.4; $\mathrm{H}, 7.2 ; \mathrm{N}, 5.3 \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 81.5 ; \mathrm{H}, 7.2 ; \mathrm{N}, 5.3 \%$); TLC (C-E 85:15) $R_{\mathrm{f}} 0.66 ; v_{\text {max }} / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{C}) ; m / z(\%) 265\left(\mathrm{M}^{+}\right.$, 71), 248 (37), $188\left(\mathrm{M}^{+}-\mathrm{Ph}, 6\right), 174\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Ph}, 3\right), 160$ $\left(\mathbf{M}^{+}-\mathrm{NCH}_{2} \mathrm{Ph}, 35\right), 105\left(\mathrm{NCH}_{2} \mathrm{Ph}, 39\right), 91\left(\mathrm{CH}_{2} \mathrm{Ph}, 100\right), 77$ ($\mathrm{Ph}, 20$), 65 (19) and 56 (17)
cis-2-Benzyl-3-isopropyl-5-phenyl-5-(trimethylsiloxy)isoxa-
lidine cis-8k. Not isolated TLC (C-E 85:15) $R_{\mathrm{f}} 0.88$; NMR signals could not be properly extracted from the spectra of the reaction mixture; $m / z(\%) 369\left(\mathrm{M}^{+}, 1.5\right), 354\left(\mathrm{M}^{+}-\mathrm{Me}, 2\right)$, $326\left(\mathrm{M}^{+}-\operatorname{Pr}^{\mathrm{i}}, 55\right), 105$ (26), 91 (100) and 77 (14).
trans-2-Benzyl-3-isopropyl-5-phenyl-5-(trimethylsiloxy)isoxazolidine trans-8k. Not isolated TLC (C-E 85: 15) $R_{\mathrm{f}} 0.80$; NMR signals reported in Tables 1 and 2 are extracted from the spectra of a $1: 5$ mixture of trans- $8 \mathbf{k}$ and $9 \mathbf{k} ; \boldsymbol{m} / z(\%) 369\left(\mathrm{M}^{+}, 2\right), 354\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{CH}_{3}, 2\right), 326\left(\mathrm{M}^{+}-\mathrm{Pr}^{\mathrm{i}}, 58\right), 248\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{NO}, 3\right), 247$ (11), 146 (5), 144 (5), 105 (23), $91\left(\mathrm{PhCH}_{2}, 100\right)$ and $77(\mathrm{Ph}, 12)$.

2-Benzyl-3-isopropyl-5-phenyl-2,3-dihydroisoxazole 9k. Purified by flash chromatography (C-E 99:1) as a pale yellow oil (Found: C, 81.8; H, 7.6; N, 5.0. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ requires $\mathrm{C}, 81.7 ; \mathrm{H}$, 7.6 ; N, 5.0%); TLC (C-E 85: 15) $R_{\mathrm{f}} 0.78$; $v_{\text {max }} / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{C})$.

Hydrolysis of 2-Benzyl-5-(tert-butyldimethylsiloxy)-3-ethylisoxazolidine cis-8a and trans-8a. General Procedure.-To a mixture of cis-8a and trans-8a ($\mathbf{3 2 1 \mathrm { mg } , 1 \mathrm { mmol } \text { , cis: trans } 1 : 1 \text {) }) ~ (~}$ were added TFA ($0.5 \mathrm{~cm}^{3}, 6.7 \mathrm{mmol}$) and water $\left(0.3 \mathrm{~cm}^{3}\right)$ at room temperature. After 3 h the reaction mixture was neutralised with $5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(1.34 \mathrm{~cm}^{3}\right)$, then was extracted with $\mathrm{CHCl}_{3}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated off under reduced pressure. The residue was purified by flash chromatography C-E 1:1). 2-Benzyl-3-ethylisoxazolidin-5-ol 15 a ($115 \mathrm{mg}, 55 \%$, cis : trans $45: 55$) was isolated; TLC(C-E 1:1) $R_{\mathrm{f}} 0.41 ; \nu_{\text {max }} / \mathrm{cm}^{-1}$ 3400 br (OH).

2-Methyl-3-phenylisoxazolidin-5-ol 15d. Hydrolysis of a mixture of cis-8d and trans-8d ($293 \mathrm{mg}, 1 \mathrm{mmol}$, cis: trans $6: 4$) under the same conditions as above gave compound 15d (135 $\mathrm{mg}, 76 \%$, cis: trans $2: 1$) purified by flash chromatography (C-E $1: 1$) as a clear oil; TLC (C-E 1:1) $R_{\mathrm{f}} 0.20 ; v_{\text {max }} / \mathrm{cm}^{-1} 3400 \mathrm{br}$ (OH).

2,5-Dimethyl-3-phenylisoxazolidin-5-ol 15i. Hydrolysis of cis$\mathbf{8 i}$ and trans- $\mathbf{8 i}$ ($235 \mathrm{mg}, 1 \mathrm{mmol}$, cis: trans $55: 45$) under the same conditions as above afforded compound 15 i ($150 \mathrm{mg}, 77 \%$, cis:trans $3: 1$), purified by flash chromatography (C-E 1:1) as an oil; TLC (C-E 1:1) $R_{\mathrm{f}} 0.36 ; v_{\text {max }} / \mathrm{cm}^{-1} 3400 \mathrm{br}(\mathrm{OH})$ and 1730 ; $m / z(\%) 146\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{NOH}, 52\right), 131\left(\mathrm{CH}_{3} \mathrm{COCH}=\mathrm{CHPh}\right.$, 99), 115 (5), $103\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{NOH}-\mathrm{CH}_{3} \mathrm{CO}, 100\right), 91$ $\left(\mathrm{CH}_{2} \mathrm{Ph}, 3\right), 77(\mathrm{Ph}, 56), 74$ (7) and 51 (38).

Hydration of 2,5-Dimethyl-3-phenyl-2,3-dihydroisoxazole 9i.-To a mixture of compound $9 \mathrm{i}(170 \mathrm{mg}, 1 \mathrm{mmol})$ and water ($0.3 \mathrm{~cm}^{3}$) was added TFA $\left(0.5 \mathrm{~cm}^{3}, 6.7 \mathrm{mmol}\right)$ at room temperature. After 30 min the reaction mixture was neutralised with saturated aq. NaHCO_{3} and extracted with diethyl ether $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated off under reduced

Table $6{ }^{1} \mathrm{H}$ NMR data for compounds 15,18 and 19 at 300 MHz

Compd.	3-H	4-H	5-H	Others
$15 a^{a}$	2.57-2.63 (m, cis), 3.16 (quintet, J 7.2, trans)	1.79-1.91 (m, cis), 2.03 (ddd, J 5.0, 8.4, 12.9, trans), 2.38 (ddd, J 1.0, 6.6 , 12.9, trans), $2.57-$ 2.63 (m, cis)	$\begin{array}{lll} 5.35 & (\mathrm{dd}, & J \\ 5.8,5 & 0.5, \\ 5.8, & \text { cis), } & 5.44 \\ (\mathrm{dd}, & J & 1.0, \\ \text { trans }) & & \end{array}$	$0.84\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2}\right.$ Me trans) , $0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2} \mathrm{Me}\right.$ cis), 1.31-1.70 (4 H, m, CH2 Me cis $+\mathrm{CH}_{2} \mathrm{Me}$ trans $), 3.40(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, OH cis +OH trans $), 3.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0, \mathrm{CH}_{2} \mathrm{Ph}\right.$ cis $), 4.06(1 \mathrm{H}$, d, J 14.0, $\left.\mathrm{CH}_{2} \mathrm{Ph} c i s\right), 4.08\left(1 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{CH}_{2} \mathrm{Ph}\right.$ trans $), 4.17$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3, \mathrm{CH}_{2} \mathrm{Ph}$ trans), $7.18-7.38$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ cis +Ph trans)
15d ${ }^{\text {a }}$	3.49 (t, J9.0, cis), 4.01-4.12 (m, trans)	$\begin{aligned} & 2.33-2.40(\mathrm{~m}, \text { cis }), \\ & 2.60(\mathrm{~m}, \text { trans }), \\ & 2.76- \\ & 2.85(\mathrm{~m}, \text { trans }), \\ & 3.72- \\ & 3.03(\mathrm{dt}, \mathrm{~J} 7.1,13.6, \text { cis }) \end{aligned}$	5.53-5.59 (m, cis), 5.61-5.66 (m, trans)	2.62 ($6 \mathrm{H}, \mathrm{s}$, NMe cis + NMe trans), 2.76-2.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OH}$ trans +OH cis), 7.29-7.49 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
$15 i^{a}$	3.57 (br t, J 8.9, cis), 4.15 (dd, $J 5.8,12.1$, trans)	2.28-2.44 (m, trans), 2.47 (dd, J9.3, 13.2, cis), 2.50-2.70 (m, trans), 2.75 (dd, J 8.3, 13.2, cis)		$1.58(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ cis), $1.62(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ trans $), 2.61(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$ cis + NMe trans), $2.79(2 \mathrm{H}, \mathrm{brs}, \mathrm{OH}$ cis +OH trans $), 7.27-7.43$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ cis +Ph trans)
cis-18d	$\begin{aligned} & 3.62 \\ & J \sim 7.5) \end{aligned} \text { (br t, }$	$\begin{aligned} & 2.09 \text { (ddd, } J ~ 6.9, ~ 9.6, \\ & 12.4), 2.77 \text { (dt, } J 7.3, \\ & \text { 12.4) } \end{aligned}$	$\begin{aligned} & 4.25-4.36(1 \mathrm{H}, \\ & \mathrm{m}) \end{aligned}$	$2.30-2.50\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 2.53-2.68\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 2.61(3 \mathrm{H}$, $\mathrm{s}, \mathrm{NMe}), 5.05-5.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\right), 5.78-5.93(1 \mathrm{H}, \mathrm{m},=\mathrm{CH})$, 7.23-7.41 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
trans-18d	3.42-3.54 (m)	2.29-2.53 ($2 \mathrm{H}, \mathrm{m}$)	4.28-4.39 (m)	$\begin{aligned} & 2.29-2.53\left(2 \mathrm{H}, \mathrm{~m}, 5-\mathrm{CH}_{2}\right), 2.59(3 \mathrm{H}, \mathrm{~s}, \mathrm{NMe}), 5.06-5.20(2 \mathrm{H}, \mathrm{~m}, \\ & \left.\mathrm{CH}_{2}=\right), 5.77-5.93(1 \mathrm{H}, \mathrm{~m},=\mathrm{CH}), 7.23-7.44(5 \mathrm{H}, \mathrm{~m}, \mathrm{Ph}) \end{aligned}$
cis-19d	$\begin{aligned} & 3.49 \\ & J \sim 8.5) \end{aligned} \text { (br t, }$	$\begin{aligned} & 2.62 \text { (ddd, } J ~ 3.8,8.4, \\ & 13.0 \text {), } 3.09 \text { (dt, } J 8.9 \text {, } \\ & 13.0 \text {) } \end{aligned}$	$\begin{aligned} & 4.86(\mathrm{dd}, J 3.8 \text {, } \\ & 8.9) \end{aligned}$	2.65 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 7.28-7.51 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
trans-19d	3.92-4.01 (m)	$\begin{aligned} & 2.79 \text { (dt, } J ~ 8.0, ~ 12.6), \\ & 2.98 \text { (ddd, } J ~ 4.4,6.9 \\ & 12.6 \text {) } \end{aligned}$	4.81-4.94 (m)	2.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 7.28-7.53 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)

${ }^{a}$ cis- and trans- 15 cannot be separated by flash chromatography. The reported data were obtained from spectra of fractions enriched in one isomer.
pressure. Flash chromatography (C-E $1: 1$) gave 2,5-dimethyl-3-phenylisoxazolidin-5-ol $15 i(160 \mathrm{mg}, 82 \%$, cis: trans $3: 1$) as an oil.

Reduction of 2-Methyl-3-phenylisoxazolidin-5-ol 15d.-To a solution of compound $15 \mathrm{~d}(270 \mathrm{mg}, 1.5 \mathrm{mmol})$ in methanol $(0.8$ cm^{3}) was added $\mathrm{NaBH}_{4}(42 \mathrm{mg}, 1 \mathrm{mmol})$ at room temperature. After 2 h the solvent was evaporated off under reduced pressure, saturated aq. $\mathrm{NaHCO}_{3}\left(1 \mathrm{~cm}^{3}\right)$ was added, and the mixture was extracted with diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic phases were evaporated to dryness and the residue was purified by flash chromatography (A-C 7:3) to give 3-($N-$ hydroxy- N-methylamino)-3-phenylpropan-1-ol 16 d (250 mg , 92%); TLC (A-C $8: 2) R_{\mathrm{f}} 0.28 ; v_{\max } / \mathrm{cm}^{-1} 3300 \mathrm{br}(\mathrm{OH}) ; m / z(\%)$ $181\left(\mathrm{M}^{+}, 3\right), 179\left(\mathrm{M}^{+}-2,1\right), 163\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 7\right), 136(54), 121$ (10), 120 (36), 105 (100), 104 (30), $91\left(\mathrm{CH}_{2} \mathrm{Ph}, 65\right), 77(\mathrm{Ph}, 32)$ and $51(15) ; \delta_{\mathrm{H}} 1.90-2.07(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.07-2.20(2 \mathrm{H}$, br s, $\mathrm{NOH}+\mathrm{OH}), 2.34-2.48(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.53(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.63-$ $3.82\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}+3-\mathrm{H}\right)$ and $7.24-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}} 35.2$ (C-2), $45.6(\mathrm{MeN}), 60.9(\mathrm{C}-3), 72.0(\mathrm{C}-1), 127.7,128.2$ and 128.9 (ArCH) and 138.5 (ArC).

Reduction of 2,5-Dimethyl-3-phenylisoxazolidin-5-ol 15i.-To a solution of compound $15 \mathrm{i}(290 \mathrm{mg}, 1.5 \mathrm{mmol})$ in methanol (0.8 cm^{3}) was added $\mathrm{NaBH}_{4}(42 \mathrm{mg}, 1 \mathrm{mmol})$ at room temperature. After 30 min the solvent was evaporated off under reduced pressure, saturated aq. $\mathrm{NaHCO}_{3}\left(1 \mathrm{~cm}^{3}\right)$ was added, and the mixture was extracted with diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic phases were evaporated to dryness and the residue was purified by flash chromatography ($\mathrm{A}-\mathrm{C} 8: 2$) to give oily 4-(N-hydroxy- N-methyl)-4-phenylbutan-2-ol $16 \mathbf{1}$ (250 mg , 85%) as a $1: 1$ mixture of diastereoisomers on the basis of integrals of methyl signals in the ${ }^{1} \mathrm{H}$ NMR spectrum; $v_{\text {max }} / \mathrm{cm}^{-1}$ $3300 \mathrm{br}(\mathrm{OH}) ; m / z(\%) 193\left(\mathrm{M}^{+}-2,8\right), 146(5), 134(12), 131$ (17), 121 (30), 120 (23), 118 (20), 105 (77), 104 (100), 78 (28) and $77(52) ; \delta_{\mathrm{H}} 1.20\left(\frac{3}{2} \mathrm{H}, \mathrm{d}, J 6.7,1-\mathrm{H}_{3}\right), 1.22\left(\frac{3}{2} \mathrm{H}, \mathrm{d}, J 6.3,1-\mathrm{H}_{3}\right)$, $1.65-1.75(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.00-2.14(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NOH}+\mathrm{OH})$, $2.25-2.40(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.51(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.54$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $3.80-3.90(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.93-4.06(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$ and $7.29-7.40(5$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 23.1(\mathrm{C}-1), 23.8(\mathrm{C}-1), 40.6(\mathrm{C}-3), 41.3(\mathrm{C}-3), 45.0$
(MeN), $45.9(\mathrm{MeN}), 65.4$ (C-4), 68.6 (C-4), 72.3 (C-2), 127.7, 127.9, 128.1, 128.5, 128.6 and $129.5(\mathrm{ArCH})$ and $138.0(\mathrm{ArC})$.

Reduction of 2-Benzyl-3-ethyl-5-methyl-5-(trimethylsiloxy)isoxazolidine cis-8g and trans-8g.-Copper(ii) acetate (10 mg) and Zn dust ($325 \mathrm{mg}, 5 \mathrm{mmol}$) were poured into glacial acetic acid ($0.8 \mathrm{~cm}^{3}$) and the solution was stirred for 10 min at room temperature until the blue colour disappeared. To this freshly prepared $\mathrm{Zn} / \mathrm{Cu}$ couple was added a solution of isoxazolidines $\mathbf{8 g}(293 \mathrm{mg}, 1 \mathrm{mmol}$; this reaction is often exothermic) in acetic acid $\left(1.2 \mathrm{~cm}^{3}\right)$-water $\left(0.3 \mathrm{~cm}^{3}\right)$. After 1 h at $60-70^{\circ} \mathrm{C}$ the reaction was worked up by addition of $6 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ until pH 8 (glass electrode), and extraction with $\mathrm{CHCl}_{3}(3 \times 20$ cm^{3}). Flash chromatography (C-A 6:4) of the residue afforded 4-(benzylamino)hexan-2-one $17 \mathrm{~g}(100 \mathrm{mg}, 50 \%$) as a yellow oil; TLC (C-A $1: 1) R_{\mathrm{f}} 0.20 ; v_{\max } / \mathrm{cm}^{-1} 3700(\mathrm{NH}), 1710(\mathrm{C}=\mathrm{O}), 1360$ and $1180 ; \delta_{\mathrm{H}} 0.93\left(3 \mathrm{H}, \mathrm{t}, J 7.4,6-\mathrm{H}_{3}\right), 1.45-1.67\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right)$, $1.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 2.16\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{3}\right), 2.57(2 \mathrm{H}, \mathrm{d}, J 6.3,3-$ $\left.\mathrm{H}_{2}\right), 3.05(1 \mathrm{H}$, quint, $J 6.3,4-\mathrm{H}), 3.74\left(1 \mathrm{H}, \mathrm{d}, J 12.9, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.87\left(1 \mathrm{H}, \mathrm{d}, J 12.9, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.32-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}} 9.7$ (C-6), 26.4 (C-5), 30.6 (C-1), 47.9 (C-3), 50.9 (C-4), 54.6 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 126.8,128.0$ and $128.3(\mathrm{ArCH}), 140.4(\mathrm{ArC})$ and 206.0 (C-2).

Coupling of Compound $\mathbf{8 d}$ with Allyltrimethylsilane (Table 5, Run 1).-To a solution of cis-8d and trans-8d ($293 \mathrm{mg}, 1.0$ mmol) in $\mathrm{CHCl}_{3}\left(13 \mathrm{~cm}^{3}\right)$ were added allyltrimethylsilane (0.20 $\left.\mathrm{cm}^{3}, 1.3 \mathrm{mmol}\right)$ and TMSOTf $\left(0.212 \mathrm{~cm}^{3}, 1.1 \mathrm{mmol}\right)$ at room temperature. The mixture was stirred at $75^{\circ} \mathrm{C}$ for 8 h and quenched with aq. $\mathrm{NaHCO}_{3}\left(2 \mathrm{~cm}^{3}\right)$; the two liquid layers were separated and the aqueous phase was extracted with diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness. Flash chromatography (C-E 99:1) gave cis-and trans-2-methyl-3-phenyl-5-(prop-2enyl)isoxazolidine 18 d as an oil ($122 \mathrm{mg}, 60 \%$, cis: trans $1: 1.3$).

Alternatively (Table 5, run 2), to isoxazolidines cis-8d and trans- $8 \mathbf{d}$ ($293 \mathrm{mg}, 1.0 \mathrm{mmol}$) dissolved in toluene $\left(20 \mathrm{~cm}^{3}\right)$ were added, at room temperature, allyltrimethylsilane $\left(0.48 \mathrm{~cm}^{3}, 3.0\right.$ $\mathrm{mmol})$ and TMSOTf ($0.212 \mathrm{~cm}^{3}, 1.1 \mathrm{mmol}$). The mixture was stirred at $70^{\circ} \mathrm{C}$ for 5 h and quenched with aq. $\mathrm{NaHCO}_{3}\left(2 \mathrm{~cm}^{3}\right)$;

Table $7 \quad{ }^{13} \mathrm{C}$ NMR data for compounds 15,18 and 19 at 75 MHz

Compd.	C-3	C-4	C-5	CH2 ${ }_{2}$	Ph	NMe	Others
cis-15a ${ }^{\text {a }}$	65.4	43.5	95.4	64.6	127.1, 127.2, 128.1, 128.2,		$10.8\left(\mathrm{CH}_{2} \mathrm{Me}\right.$ cis $), 26.8\left(\mathrm{CH}_{2} \mathrm{Me}\right.$ cis $)$
trans-15a ${ }^{\text {a }}$	67.2	42.3	97.6	60.6	$\{128.9,129.1,136.9,137.8$		$11.0\left(\mathrm{CH}_{2} \mathrm{Me}\right.$ trans), 25.0 ($\mathrm{CH}_{2} \mathrm{Me}$ trans)
cis-15i ${ }^{\text {a }}$	74.2	52.8	102.0		$\{127.4,127.8,128.0,128.4$,	42.6	$25.9(\mathrm{Me})$
trans-15i ${ }^{\text {a }}$	74.2	51.2	103.3		$\int 128.6,128.8,137.6,138.7$	42.6	25.9 (Me)
cis-18d	73.3	$40.4{ }^{\text {b }}$	76.2		127.5, 127.6, 128.6, 139.2	43.7	$45.4{ }^{\text {b }}\left(5-\mathrm{CH}_{2}\right), 117.2\left(\mathrm{CH}_{2}=\right), 134.6(\mathrm{CH}=)$
trans-18d	73.0	$38.9{ }^{\text {b }}$	76.1		127.7, 128.6, 129.0, 139.3	43.2	$44.5{ }^{\text {b }}\left(5-\mathrm{CH}_{2}\right), 117.4\left(\mathrm{CH}_{2}=\right), 133.9(\mathrm{CH}=)$
cis-19d	63.7	44.1	72.0		127.8, 128.4, 128.7, 136.9	42.4	$119.6(\mathrm{CN})$ (${ }^{\text {a }}$
trans-19d	63.5	43.8	71.9		127.3, 128.3, 128.8, 137.0	44.4	118.2 (CN)

${ }^{a}$ cis- and trans- 15 cannot be separated by flash chromatography. The reported data were collected from spectra of mixtures enriched in one isomer. Aromatic carbons of cis- and trans- 15 are collected together. ${ }^{b}$ The assignments may have to be interchanged.
the two liquid layers were separated and the aqueous phase was extracted with diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to dryness. Flash chromatography of the oily residue gave the products 18d ($90 \mathrm{mg}, 44 \%$, cis : trans $1: 5$).

One-pot Synthesis of Compound 18d.-To a stirred solution of isoxazolidine 8d [prepared from nitrone $\mathbf{1 d}$ ($135 \mathrm{mg}, 1 \mathrm{mmol}$) and silyl enol ether $7 \mathrm{a}(0.174 \mathrm{~g}, 1.1 \mathrm{mmol})$ in anhydrous chloroform ($3 \mathrm{~cm}^{3}$)] was added drop-by-drop (10 min) a solution of TMSOTf $\left(0.21 \mathrm{~cm}^{3}, 1.4 \mathrm{mmol}\right)$ in chloroform ($2 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. After 23 h was added allyltrimethylsilane $\left(0.6 \mathrm{~cm}^{3}, 3\right.$ mmol) and the reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 7 h before being quenched with saturated aq. $\mathrm{NaHCO}_{3}\left(2 \mathrm{~cm}^{3}\right)$; the two liquid layers were separated and the aqueous phase was extracted with diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to dryness. The residue was chromatographed to give the products $\mathbf{1 8 d}$ (90 $\mathrm{mg}, 44 \%$, cis : trans $55: 45$) as clear oil.
cis-2-Methyl-3-phenyl-5-(prop-2-enyl)isoxazolidine cis-18d (Found: C, 76.7; H, 8.4; N, 6.9. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ requires C, 76.8; H, 8.4; $\mathrm{N}, 6.9 \%$); TLC (C-E 85:15) $R_{\mathrm{f}} 0.57$; $v_{\text {max }} / \mathrm{cm}^{-1} 1640$ (C=C) and $990(\mathrm{CH}) ; m / z(\%) 203\left(\mathrm{M}^{+}, 26\right), 174(56), 160(46), 136$ [$\left.\mathrm{PhCHN}\left(\mathrm{CH}_{3}\right) \mathrm{OH}, 57\right], 135(19), 134\left[\mathrm{PhC}=\mathrm{NO}\left(\mathrm{CH}_{3}\right), 100\right]$, $118(43), 115(31), 104(28), 91\left(\mathrm{PhCH}_{2}, 63\right), 77(\mathrm{Ph}, 53)$ and 51 (26).
trans-2-Methyl-3-phenyl-5-(prop-2-enyl) isoxazolidine trans18d (Found: C, 76.8; H, 8.4; N, 6.9\%); TLC (C-E 85: 15) $R_{\mathrm{f}} 0.46$; $\nu_{\text {max }} / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C})$ and $985(\mathrm{CH}) ; m / z(\%) 203\left(\mathrm{M}^{+}, 30\right), 174$ (52), 160 (40), $136\left[\mathrm{PhCHN}\left(\mathrm{CH}_{3}\right) \mathrm{OH}, 50\right], 135$ (18), 134 $\left[\mathrm{PhC}=\mathrm{NO}\left(\mathrm{CH}_{3}\right), 100\right], 118(43), 115(35), 104(28), 91\left(\mathrm{PhCH}_{2}\right.$, 70), 77 ($\mathrm{Ph}, 45$) and 51 (26)

Coupling of Compound $8 \mathbf{8}$ with Cyanotrimethylsilane.-To a solution of cis-8d and trans- 8 d ($293 \mathrm{mg}, 1.0 \mathrm{mmol}$) in CHCl_{3} (13 cm^{3}) were added cyanotrimethylsilane ($0.173 \mathrm{~cm}^{3}, 1.3 \mathrm{mmol}$) and TMSOTf $\left(0.212 \mathrm{~cm}^{3}, 1.1 \mathrm{mmol}\right)$ at room temperature. The mixture was stirred for 8 h at $50^{\circ} \mathrm{C}$ and quenched with saturated aq. $\mathrm{NaHCO}_{3}\left(1 \mathrm{~cm}^{3}\right)$; the two liquid layers were separated and the aqueous phase was extracted with diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to dryness. Flash chromatography (C-E 90:10) of the residue gave the cis- and trans-2-methyl-3-phenylisoxazolidine-5-carbonitrile 19d ($100 \mathrm{mg}, 53 \%$, cis: trans 2.4:1), as a yellow oil.
cis-2-Methyl-3-phenylisoxazolidine-5-carbonitrile cis-19d
(Found: C, 70.3; H, 6.4; N, 14.9. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires C, 70.2;

H, 6.4; N, 14.9\%); TLC (C-E 65:35) $R_{\mathrm{f}} 0.52 ; v_{\text {max }} / \mathrm{cm}^{-1} 2230$ (CN); $m / z(\%) 188\left(\mathrm{M}^{+}, 61\right), 143\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{NO}, 41\right), 142(17)$, $135\left[\mathrm{PhCHN}(\mathrm{O}) \mathrm{CH}_{3}, 23\right], 134(100), 115(38), 91\left(\mathrm{PhCH}_{2}, 17\right)$, 77 ($\mathrm{Ph}, 30$) and 51 H (22).
trans-2-Methyl-3-phenylisoxazolidine-5-carbonitrile trans19d (Found: C, 70.2; H, 6.3; N, 14.9\%); TLC (C-E 65:35) R_{f} $0.67 ; v_{\max } / \mathrm{cm}^{-1} 2230(\mathrm{CN}) ; m / z(\%) 188\left(\mathrm{M}^{+}, 57\right), 143(\mathrm{M}-$ $\mathrm{CH}_{3} \mathrm{NO}, 46$), 142 (17), 135 [$\left.\mathrm{PhCHN}(\mathrm{O}) \mathrm{CH}_{3}, 28\right], 134$ (100), 116 (38), $115(42), 91\left(\mathrm{PhCH}_{2}, 18\right), 77(\mathrm{Ph}, 37)$ and $51(30)$.

Acknowledgements

We thank Italian CNR (Progetto Finalizzato Chimica Fine 2) for financial support.

References

1 Z.-Y. Chang and R. M. Coates, J. Org. Chem., 1990, 55, 3464; 3475; A. Basha, J. D. Ratajczyk and D. W. Brooks, Tetrahedron Lett., 1991, 32, 3783.
2 F. Mancini, M. G. Piazza and C. Trombini, J. Org. Chem., 1991, 56, 4246; D. D. Dhavale, L. Gentilucci, M. G. Piazza and C. Trombini, Liebigs Ann. Chem., 1992, 1289.
3 S. Nawayama, S. Dan, Y. Inouye and H. Kakisawa, Chem. Lett., 1985, 957; P. DeShong, W. Li, J. W. Kennington, Jr., H. L. Ammon and J. M. Leginus, J. Org. Chem., 1991, 56, 1364.
4 D. D. Dhavale and C. Trombini, Heterocycles, 1992, 34, 2253.
5 D. D. Dhavale and C. Trombini, J. Chem. Soc., Chem. Commun., 1992, 1268.
6 H. Stamm and H. Steudle, Tetrahedron, 1979, 35, 647; S. Tomoda, Y. Takeuchi and Y. Nomura, Chem. Lett., 1982, 1787; Y. Kita, F. Itoh, O. Tamura, Y. Y. Ke and Y. Tamura, Tetrahedron Lett., 1987, 28, 1431; Y. Kita, O. Tamura, F. Itoh, H. Kishino, T. Miki, M. Kohno and Y. Tamura, J. Chem. Soc., Chem. Commun., 1988, 761.
7 B. Ly, F. Petrus, J. Verducci, D. Gombeau and G. Pfister-Guillouzo, Gazz. Chim. Ital., 1981, 111, 279.
8 J. E. Baldwin, L. M. Harwood and M. J. Lombard, Tetrahedron, 1984, 40, 4363; S. W. Baldwin and J. Aubé, Tetrahedron Lett., 1987, 28, 179; I. Panfil, S. Maciejewski, C. Belzecki and M. Chmielewski, Tetrahedron Lett., 1989, 30, 1527; 1990, 31, 1901.
9 L. Ci Nunno and A. Scilimati, Tetrahedron, 1991, 47, 4121.
10 T. Mukaiyama and M. Murakami, Synthesis, 1987, 1043.
11 R. M. Coates and C. H. Cummins, J. Org. Chem., 1986, 51, 1383.
12 M. E. Jung and R. B. Blum, Tetrahedron Lett., 1977, 3791.
13 C. H. Heathcock, S. K. Davidsen, K. T. Hug and L. A. Flippin, J. Org. Chem., 1986, 51, 3027.

Paper 3/03032F
Received 27th May 1993
Accepted 9th July 1993

[^0]: \dagger Ketene silyl acetals and Reformatsky reagents, more reactive than simple silyl enol ethers, do not require any activator for the addition to nitrones, which affords 5 -isoxazolidinones at room temperature or below. ${ }^{6}$

[^1]: * Diastereoisomeric excess.

[^2]: * The formation of a 5-hydroxyisoxazolidine by the lithium enolate of acetaldehyde addition to nitrones has been recently reported, ${ }^{9}$ but the reaction seems to be limited to N, C-diaryl nitrones.

